6,670 research outputs found

    Onset of classical behaviour after a phase transition

    Full text link
    We analyze the onset of classical behaviour in a scalar field after a continuous phase transition, in which the system-field, the long wavelength order parameter of the model, interacts with an environment of its own short-wavelength modes. We compute the decoherence time for the system-field modes from the master equation and compare it with the other time scales of the model. Within our approximations the decoherence time is in general the smallest dynamical time scale. Demanding diagonalisation of the decoherence functional produces identical results. The inclusion of other environmental fields makes diagonalisation occur even earlier.Comment: Seven pages, no figures. Contributed talk to the Second International Workshop DICE2004, Piombino, Italy. To be published in the Brazilian Journal of Physic

    Decoherence in a Two Slit Diffraction Experiment with Massive Particles

    Full text link
    Matter-wave interferometry has been largely studied in the last few years. Usually, the main problem in the analysis of the diffraction experiments is to establish the causes for the loss of coherence observed in the interference pattern. In this work, we use different type of environmental couplings to model a two slit diffraction experiment with massive particles. For each model, we study the effects of decoherence on the interference pattern and define a visibility function that measures the loss of contrast of the interference fringes on a distant screen. Finally, we apply our results to the experimental reported data on massive particles C70C_{70}.Comment: 6 pages, 3 figure

    Geometrical properties of Riemannian superspaces, observables and physical states

    Full text link
    Classical and quantum aspects of physical systems that can be described by Riemannian non degenerate superspaces are analyzed from the topological and geometrical points of view. For the N=1 case the simplest supermetric introduced in [Physics Letters B \textbf{661}, (2008),186] have the correct number of degrees of freedom for the fermion fields and the super-momentum fulfil the mass shell condition, in sharp contrast with other cases in the literature where the supermetric is degenerate. This fact leads a deviation of the 4-impulse (e.g. mass constraint) that can be mechanically interpreted as a modification of the Newton's law. Quantum aspects of the physical states and the basic states and the projection relation between them, are completely described due the introduction of a new Majorana-Weyl representation of the generators of the underlying group manifold. A new oscillatory fermionic effect in the B0B_{0} part of the vaccum solution involving the chiral and antichiral components of this Majorana bispinor is explicitly shown.Comment: 16 pags. 3 figures. To Anna Grigorievna Kartavenko and Academic Professor Alexei Norianovich Sissakian, in memoria

    How Phase Transitions induce classical behaviour

    Full text link
    We continue the analysis of the onset of classical behaviour in a scalar field after a continuous phase transition, in which the system-field, the long wavelength order parameter of the model, interacts with an environment, of its own short-wavelength modes and other fields, neutral and charged, with which it is expected to interact. We compute the decoherence time for the system-field modes from the master equation and directly from the decoherence functional (with identical results). In simple circumstances the order parameter field is classical by the time the transition is complete.Comment: 10 pages, 1 figure: To be published in the International Journal of Theoretical Physics (2005) as part of the Proceedings of the "Peyresq Physics 9" meeting (2004) on "Micro and Macro structures of spacetime",ed. E. Verdague

    4D quantum black hole physics from 2D models?

    Get PDF
    Minimally coupled 4D scalar fields in Schwarzschild space-time are considered. Dimensional reduction to 2D leads to a well known anomaly induced effective action, which we consider here in a local form with the introduction of auxiliary fields. Boundary conditions are imposed on them in order to select the appropriate quantum states (Boulware, Unruh annd Israel-Hartle-Hawking). The stress tensor is then calculated and its comparison with the expected 4D form turns out to be unsuccessful. We also critically discuss in some detail a recent controversial result appeared in the literature on the same topic.Comment: latex, 13 pages; misprints corrected, references adde

    Rotating charged Black Holes in Einstein-Born-Infeld theories and their ADM mass

    Full text link
    In this work, the solution of the Einstein equations for a slowly rotating black hole with Born-Infeld charge is obtained. Geometrical properties and horizons of this solution are analyzed. The conditions when the ADM mass (as in the nonlinear static cases) and the ADM angular momentum of the system have been modified by the non linear electromagnetic field of the black hole, are considered.Comment: Final version and figures in journal. References and comments adde
    corecore